556

New Synthesis of Pyrazolo[4,3-d]pyrimidines

By Shigeo Senda,* Kosaku Hirota, Tetsuji Asao, and Yoshihiro Yamada (Gifu College of Pharmacy, Mitahora, Gifu 502, Japan)

Summary Treatment of 6-bromomethyl-1,3-dimethyl-5- respective 2-substituted pyrazolo[4,3-d]pyrimidine 1-nitrouracil with various primary amines gave the oxides.

J.C.S. CHEM. COMM., 1977

Pyrazolo[4,3-d]pyrimidines are interesting compounds from the physiological activity viewpoint, since their fundamental structure is present in antibiotics such as formycin.¹ Although individual pyrazolo [4,3-d] pyrimidines have been synthesized,^{2,3} a general synthesis of this ring

Treatment of (1) with 2 equiv. of methylamine under reflux for 4 h in ethanol afforded the oxide (3a), m.p. 265-266 °C, in 23% yield. When the reaction was performed in ethyl acetate at 0 °C for 0.5 h, the nitrouracil (2a), m.p. 99-100 °C, was obtained in 34% yield. Compound (2a) could be converted into (3a) in 55% yield by refluxing for 12 h in ethanol. Catalytic reduction of (3a) over Pd-C in methanol (80 °C; 50 atm of H₂) gave (4), m.p. 265-266 °C (lit.2 m.p. 267-269 °C) in 84% yield. Compound (4) was identical with an authentic sample.3†

Other pyrazolo [4,3-d] pyrimidine 1-oxides (3b-g) were similarly prepared by refluxing (1) and a primary amine in ethanol (see Table). When (1) was treated with the

Table. Formation of pyrazolo[4,3-d]pyrimidine 1-oxides by reaction of (1) with amines.

		(2)		(3)		
	R	M.p./°C	% Yield	M.p./°C	% Yield	da.
a	Me	99-100	34	265 - 266	23	(55)
b	Pri	88	98	183-184	19	(63)
c	$CH_2=CH-CH_2$	82 - 83	91	216 – 217	53	(81)
đ	Furfuryl	79–80	78	219 - 220	59	(65)
e	PhCH ₂	_		239 - 240	58	` '
f	p-MeOC ₆ H ₄ CH ₂	*****		225 - 226	62	
g	PhCH ₂ CH ₂			219-220	61	

a Yield from (1); yield from (2) in parentheses.

system is not available. Here we report a new one-step procedure for the synthesis of 2-substituted pyrazolo [4,3-d]pyrimidine 1-oxides from readily available 6-bromomethyl-1,3-dimethyl-5-nitrouracil (1)4 by treatment with various primary amines.

amine in ethyl acetate at 0 °C, the intermediates (2b-d) were obtained and upon further refluxing in ethanol ring closure occurred giving the corresponding pyrazolo[4,3-d]pyrimidines (3b-d).

(Received, 13th May 1977; Com. 461.)

- † All new compounds gave satisfactory elemental analyses and spectral properties consistent with the assigned structures.
- ¹ R. J. Suhadolnik in 'Nucleoside Antibiotics,' Wiley-Interscience, New York, 1970, p. 354.

 ² R. K. Robins, F. W. Furcht, A. D. Grauer, and J. W. Jones, *J. Amer. Chem. Soc.*, 1956, 78, 2418; L. B. Townsend, R. A. Long, J. P. McGraw, D. W. Miles, R. K. Robins, and H. Eyring, *J. Org. Chem.*, 1974, 39, 2023, and references cited therein; F. L. Rose, J. Chem. Soc., 1952, 3448; 1954, 4116.

 - V. Papesh and R. M. Dodson, J. Org. Chem., 1965, 30, 199.
 S. Senda, K. Hirota, T. Asao, and Y. Yamada, Heterocycles, 1976, 4, 1765.